Commuting spectral measures on Hilbert space
نویسندگان
چکیده
منابع مشابه
Spectral Theory of Operator Measures in Hilbert Space
In §2 the spaces L2(Σ,H) are described; this is a solution of a problem posed by M. G. Krĕın. In §3 unitary dilations are used to illustrate the techniques of operator measures. In particular, a simple proof of the Năımark dilation theorem is presented, together with an explicit construction of a resolution of the identity. In §4, the multiplicity function NΣ is introduced for an arbitrary (non...
متن کاملm-Isometric Commuting Tuples of Operators on a Hilbert Space
We consider a generalization of isometric Hilbert space operators to the multivariable setting. We study some of the basic properties of these tuples of commuting operators and we explore several examples. In particular, we show that the d-shift, which is important in the dilation theory of d-contractions (or row contractions), is a d-isometry. As an application of our techniques we prove a the...
متن کاملOn the Hilbert Space Embeddings and Metrics on Probability Measures
A Hilbert space embedding for probability measures has recently been proposed (Gretton et al., 2007; Smola et al., 2007), with applications including dimensionality reduction, homogeneity testing and independence testing. This embedding represents any probability measure as a mean element in a reproducing kernel Hilbert space (RKHS). Using this embedding, a pseudometric (let us define it as γk)...
متن کاملInjective Hilbert Space Embeddings of Probability Measures
A Hilbert space embedding for probability measures has recently been proposed, with applications including dimensionality reduction, homogeneity testing and independence testing. This embedding represents any probability measure as a mean element in a reproducing kernel Hilbert space (RKHS). The embedding function has been proven to be injective when the reproducing kernel is universal. In this...
متن کاملHilbert Space Embeddings and Metrics on Probability Measures
A Hilbert space embedding for probability measures has recently been proposed, with applications including dimensionality reduction, homogeneity testing, and independence testing. This embedding represents any probability measure as a mean element in a reproducing kernel Hilbert space (RKHS). A pseudometric on the space of probability measures can be defined as the distance between distribution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1954
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1954.4.355